Lý thuyết điều khiển PID Bộ_điều_khiển_PID

Phần này chỉ mô tả dạng song song hoặc không tương tác của bộ điều khiển PID. Xin xem thêm "Alternative nomenclature and PID forms" cho những dạng khác.

Sơ đồ điều khiển PID được đặt tên theo ba khâu hiệu chỉnh của nó, tổng của ba khâu này tạo thành bởi các biến điều khiển (MV). Ta có:

M V ( t ) = P o u t + I o u t + D o u t {\displaystyle \mathrm {MV(t)} =\,P_{\mathrm {out} }+I_{\mathrm {out} }+D_{\mathrm {out} }}

trong đó

P o u t {\displaystyle P_{\mathrm {out} }} , I o u t {\displaystyle I_{\mathrm {out} }} , và D o u t {\displaystyle D_{\mathrm {out} }} là các thành phần đầu ra từ ba khâu của bộ điều khiển PID, được xác định như dưới đây.

Khâu tỉ lệ

Đồ thị PV theo thời gian, ba giá trị Kp (Ki và Kd là hằng số)

Khâu tỉ lệ (đôi khi còn được gọi là độ lợi) làm thay đổi giá trị đầu ra, tỉ lệ với giá trị sai số hiện tại. Đáp ứng tỉ lệ có thể được điều chỉnh bằng cách nhân sai số đó với một hằng số Kp, được gọi là hệ số tỉ lệ.

Khâu tỉ lệ được cho bởi:

P o u t = K p e ( t ) {\displaystyle P_{\mathrm {out} }=K_{p}\,{e(t)}}

trong đó

P o u t {\displaystyle P_{\mathrm {out} }} : thừa số tỉ lệ của đầu ra K p {\displaystyle K_{p}} : Hệ số tỉ lệ, thông số điều chỉnh e {\displaystyle e} : sai số = S P − P V {\displaystyle =SP-PV} t {\displaystyle t} : thời gian hay thời gian tức thời (hiện tại)

Hệ số của khâu tỉ lệ lớn là do thay đổi lớn ở đầu ra mà sai số thay đổi nhỏ. Nếu hệ số của khâu tỉ lệ quá cao, hệ thống sẽ không ổn định (xem phần điều chỉnh vòng). Ngược lại, hệ số nhỏ là do đáp ứng đầu ra nhỏ trong khi sai số đầu vào lớn, và làm cho bộ điều khiển kém nhạy, hoặc đáp ứng chậm. Nếu Hệ số của khâu tỉ lệ quá thấp, tác động điều khiển có thể sẽ quá bé khi đáp ứng với các nhiễu của hệ thống.

Drop(độ trượt)

Nếu không có nhiễu, điều khiển tỉ lệ thuần túy sẽ không xác lập tại giá trị mong muốn của nó, nhưng nó vẫn duy trì một (độ trượt) sai số ổn định trạng thái, là một hàm của độ lợi tỉ lệ và độ lợi quá trình. Đặc biệt, nếu độ lợi quá trình-trong khoảng thời gian dài bị trôi do thiếu điều khiển, như việc làm mát một lò nung tới nhiệt độ phòng-được ký hiệu G và giả sử sai số xấp xỉ là hằng số, khi đó droop-độ trượt xảy ra khi độ lợi không đổi này bằng thừa số tỉ lệ của đầu ra, P o u t , {\displaystyle P_{\mathrm {out} },} với sai số là tuyến tính, G = K p e , {\displaystyle G=K_{p}e,} do đó e = G / K p . {\displaystyle e=G/K_{p}.} Khi thừa số tỉ lệ, đẩy vào thông số tới giá trị đặt, được bù chính xác bởi độ lợi quá trình, nó sẽ kéo thông số ra khỏi giá trị đặt. Nếu độ lợi quá trình giảm, khi làm lạnh, thì trạng thái dừng sẽ nằm dưới điểm đặt, ta gọi là "droop-độ trượt".

Chỉ các thành phần dịch chuyển (trung bình dài hạn, thành phần tần số không) của độ lợi quá trình mới tác động tới độ trượt-các dao động đều hoặc ngẫu nhiên trên hoặc dưới thành phần dịch chuyển sẽ bị triệt tiêu. Độ lợi quá trình có thể thay đổi theo thời gian hoặc theo các thay đổi bên ngoài, ví dụ như nếu nhiệt độ phòng thay đổi, việc làm lạnh sẽ nhanh hơn hoặc chậm hơn.

Độ trượt tỉ lệ thuận với độ lợi quá trình và tỉ lệ nghịch với độ lợi tỉ lệ, và là một khiếm khuyết không thể tránh được của điều khiển tỉ lệ thuần túy. Độ trượt có thể được giảm bớt bằng cách thêm một thừa số độ lệch (cho điểm đặt trên giá trị mong muốn thực tế), hoặc sửa đổi bằng cách thêm một khâu tích phân (trong bộ điều khiển PI hoặc PID), sẽ tính toán độ lệch thêm vào một cách hữu hiệu.

Bất chấp độ trượt, cả lý thuyết điều chỉnh lẫn thực tế công nghiệp chỉ ra rằng khâu tỉ lệ là cần thiết trong việc tham gia vào quá trình điều khiển.

Khâu tích phân

Đồ thị PV theo thời gian, tương ứng với 3 giá trị Ki (Kp và Kd không đổi)

Phân phối của khâu tích phân (đôi khi còn gọi là reset) tỉ lệ thuận với cả biên độ sai số lẫn quảng thời gian xảy ra sai số. Tổng sai số tức thời theo thời gian (tích phân sai số) cho ta tích lũy bù đã được hiệu chỉnh trước đó. Tích lũy sai số sau đó được nhân với độ lợi tích phân và cộng với tín hiệu đầu ra của bộ điều khiển. Biên độ phân phối của khâu tích phân trên tất cả tác động điều chỉnh được xác định bởi độ lợi tích phân, K i {\displaystyle K_{i}} .

Thừa số tích phân được cho bởi:

I o u t = K i ∫ 0 t e ( τ ) d τ {\displaystyle I_{\mathrm {out} }=K_{i}\int _{0}^{t}{e(\tau )}\,{d\tau }}

trong đó

I o u t {\displaystyle I_{\mathrm {out} }} : thừa số tích phân của đầu ra K i {\displaystyle K_{i}} : độ lợi tích phân, 1 thông số điều chỉnh e {\displaystyle e} : sai số = S P − P V {\displaystyle =SP-PV} t {\displaystyle t} : thời gian hoặc thời gian tức thời (hiện tại) τ {\displaystyle \tau } : một biến tích phân trung gian

Khâu tích phân (khi cộng thêm khâu tỉ lệ) sẽ tăng tốc chuyển động của quá trình tới điểm đặt và khử số dư sai số ổn định với một tỉ lệ chỉ phụ thuộc vào bộ điều khiển. Tuy nhiên, vì khâu tích phân là đáp ứng của sai số tích lũy trong quá khứ, nó có thể khiến giá trị hiện tại vọt lố qua giá trị đặt (ngang qua điểm đặt và tạo ra một độ lệch với các hướng khác). Để tìm hiểu thêm các đặc điểm của việc điều chỉnh độ lợi tích phân và độ ổn của bộ điều khiển, xin xem phần điều chỉnh vòng lặp.

Khâu vi phân

Đồ thị PV theo thời gian, với 3 giá trị Kd (Kp and Ki không đổi)

Tốc độ thay đổi của sai số qua trình được tính toán bằng cách xác định độ dốc của sai số theo thời gian (tức là đạo hàm bậc một theo thời gian) và nhân tốc độ này với độ lợi tỉ lệ K d {\displaystyle K_{d}} . Biên độ của phân phối khâu vi phân (đôi khi được gọi là tốc độ) trên tất cả các hành vi điều khiển được giới hạn bởi độ lợi vi phân, K d {\displaystyle K_{d}} .

Thừa số vi phân được cho bởi:

D o u t = K d d d t e ( t ) {\displaystyle D_{\mathrm {out} }=K_{d}{\frac {d}{dt}}e(t)}

trong đó

D o u t {\displaystyle D_{\mathrm {out} }} : thừa số vi phân của đầu ra K d {\displaystyle K_{d}} : Độ lợi vi phân, một thông số điều chỉnh e {\displaystyle e} : Sai số = S P − P V {\displaystyle =SP-PV} t {\displaystyle t} : thời gian hoặc thời gian tức thời (hiện tại)

Khâu vi phân làm chậm tốc độ thay đổi của đầu ra bộ điều khiển và đặc tính này là đang chú ý nhất để đạt tới điểm đặt của bộ điều khiển. Từ đó, điều khiển vi phân được sử dụng để làm giảm biên độ vọt lố được tạo ra bởi thành phần tích phân và tăng cường độ ổn định của bộ điều khiển hỗn hợp. Tuy nhiên, phép vi phân của một tín hiệu sẽ khuếch đại nhiễu và do đó khâu này sẽ nhạy hơn đối với nhiễu trong sai số, và có thể khiến quá trình trở nên không ổn định nếu nhiễu và độ lợi vi phân đủ lớn. Do đó một xấp xỉ của bộ vi sai với băng thông giới hạn thường được sử dụng hơn. Chẳng hạn như mạch bù sớm pha.

Tóm tắt

Khâu tỉ lệ, tích phân, vi phân được cộng lại với nhau để tính toán đầu ra của bộ điều khiển PID. Định nghĩa rằng u ( t ) {\displaystyle u(t)} là đầu ra của bộ điều khiển, biểu thức cuối cùng của giải thuật PID là:

u ( t ) = M V ( t ) = K p e ( t ) + K i ∫ 0 t e ( τ ) d τ + K d d d t e ( t ) {\displaystyle \mathrm {u(t)} =\mathrm {MV(t)} =K_{p}{e(t)}+K_{i}\int _{0}^{t}{e(\tau )}\,{d\tau }+K_{d}{\frac {d}{dt}}e(t)}

trong đó các thông số điều chỉnh là:

Độ lợi tỉ lệ, K p {\displaystyle K_{p}} giá trị càng lớn thì đáp ứng càng nhanh do đó sai số càng lớn, bù khâu tỉ lệ càng lớn. Một giá trị độ lợi tỉ lệ quá lớn sẽ dẫn đến quá trình mất ổn định và dao động.Độ lợi tích phân, K i {\displaystyle K_{i}} giá trị càng lớn kéo theo sai số ổn định bị khử càng nhanh. Đổi lại là độ vọt lố càng lớn: bất kỳ sai số âm nào được tích phân trong suốt đáp ứng quá độ phải được triệt tiêu tích phân bằng sai số dương trước khi tiến tới trạng thái ổn định.Độ lợi vi phân, K d {\displaystyle K_{d}} giá trị càng lớn càng giảm độ vọt lố, nhưng lại làm chậm đáp ứng quá độ và có thể dẫn đến mất ổn định do khuếch đại nhiễu tín hiệu trong phép vi phân sai số.

Tài liệu tham khảo

WikiPedia: Bộ_điều_khiển_PID http://asl.epfl.ch/research/projects/VtolIndoorFly... http://www.building-automation-consultants.com/bui... http://igor.chudov.com/manuals/Servo-Tuning/PID-wi... http://www.controleng.com/article/CA307745.html http://www.controlguru.com/pages/table.html http://www.elecdesign.com/Articles/ArticleID/6131/... http://www.embedded.com/story/OEG20020726S0044 http://books.google.com/books?id=1gfKkqB_fTcC&pg=P... http://books.google.com/books?id=VD_b81J3yFoC&pg=P... http://books.google.com/books?id=VD_b81J3yFoC&pg=P...